Proficient Photocatalytic and Sonocatalytic Degradation of Organic Pollutants Using CuO Nanoparticles

Author:

Chauhan Moondeep1,Kaur Navneet1,Bansal Pratibha1,Kumar Rajeev1,Srinivasan Sesha2ORCID,Chaudhary Ganga Ram1ORCID

Affiliation:

1. Department of Chemistry & Center of Advanced Studies in Chemistry and Department of Environmental Studies, Panjab University, 160014, Chandigarh, India

2. Department of Natural Sciences, Division of Science, Arts and Mathematics (SAM), Florida Polytechnic University, Florida-33805, USA

Abstract

In recent years, due to the advancement in nanotechnology, advanced oxidation processes (AOPs), especially sonocatalysis and photocatalysis, have become a topic of interest for the elimination of pollutants from contaminated water. In the research work reported here, an attempt has been made to study and establish a physicochemical mechanism for the catalytic activity of copper oxide nanoparticles (CuO NPs) in AOPs using the degradation of dyes as model contaminants. CuO NPs exhibited brilliant sonocatalytic and photocatalytic activities for the degradation of a cationic dye (Victoria Blue) as well as an anionic dye (Direct Red 81). The degradation efficiency of CuO NPs was calculated by analysing the variation in the absorbance of dye under a UV-Vis spectrophotometer. The influence of different operating parameters on the catalytic activity of CuO NPs, such as the amount of catalysts dose, pH of the solution, and the initial dye concentration, was thoroughly investigated. In addition, the kinetic process for the degradation was also examined. It was observed that both dyes exhibited and followed the pseudo-first-order kinetics relation. The rate constant for sonocatalysis was high as compared to photocatalysis. The rate constant for both sonocatalysis and photocatalysis was successfully established, and reusability tests were done to ensure the stability of the used catalysts. To get an insight into the degradation mechanism, experiments were performed by using OH radical scavengers. The efficacy of CuO NPs for dye decolorization was found to be superior for the sonocatalyst than the photocatalyst.

Funder

Hinkley Center for Solid and Hazardous Waste Management

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3