Photocatalytic Degradation of Losartan with Bismuth Oxychloride: Batch and Pilot Scale Demonstration

Author:

Kouvelis Konstantinos1,Ioannidi Alexandra A.1,Petala Athanasia2,Souliotis Manolis3ORCID,Frontistis Zacharias3

Affiliation:

1. Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

2. Department of Environment, Ionian University, GR-29100 Zakynthos, Greece

3. Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece

Abstract

The solar-induced semiconductor photocatalytic process is one of the greenest and most promising technologies for the elimination of pharmaceuticals in aqueous media. In the context of this study, a bismuth oxychloride (BiOCl) photocatalyst was fabricated and characterized by its morphology, crystallographic structure, and optical properties. Its photocatalytic efficiency was tested towards the degradation of Losartan (LOS), a medication used to treat high blood pressure, in water using a solar simulator. The as-prepared BiOCl exhibited significant photocatalytic efficiency, achieving complete degradation of 0.3 mg/L LOS in short periods of irradiation (15–30 min). The examined system showed optimal efficiency using 500 mg/L of BiOCL (kapp = 0.21 min−1) and pH 3 (kapp = 0.32 min−1). However, LOS removal significantly decreased in environmentally relevant water matrices, including wastewater (kapp = 0.006 min−1) and bottled water (kapp = 0.023 min−1). Additional tests carried out in synthetic water matrices showed that the LOS degradation rate was reduced by more than 40% in the presence of humic acid (kapp = 0.016 min−1) and bicarbonates (kapp = 0.029 min−1), while chlorides did not affect the overall efficiency. Moreover, photogenerated holes and singlet oxygen were the dominant oxidative species. The efficiency of the BiOCl photocatalyst towards LOS degradation was further studied using a flat plate pilot-plant scale photoreactor. It was found that more than 75% of LOS was removed after 100 kJ/L of accumulated solar irradiation. The results obtained in the pilot-plant unit confirmed the suitability of BiOCl as a potential photocatalytic material.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3