Degradation of Sulfamethoxazole Using a Hybrid CuOx–BiVO4/SPS/Solar System

Author:

Kouvelis Konstantinos,Kampioti Adamantia A.,Petala AthanasiaORCID,Frontistis Zacharias

Abstract

In recent years, advanced oxidation processes (AOPs) demonstrated great efficiency in eliminating emerging contaminants in aqueous media. However, a majority of scientists believe that one of the main reasons hindering their industrial application is the low efficiencies recorded. This can be partially attributed to reactive oxygen species (ROS) scavenging from real water matrix constituents. A promising strategy to cost-effectively increase efficiency is the simultaneous use of different AOPs. Herein, photocatalysis and sodium persulfate activation (SPS) were used simultaneously to decompose the antibiotic sulfamethoxazole (SMX) in ultrapure water (UPW) and real water matrices, such as bottled water (BW) and wastewater (WW). Specifically, copper-promoted BiVO4 photocatalysts with variable CuOx (0.75–10% wt.) content were synthesized in powder form and characterized using ΒΕΤ, XRD, DRS, SEM, and HRTEM. Results showed that under simulated solar light irradiation alone, 0.75 Cu.BVO leads to 0.5 mg/L SMX destruction in UPW in a very short treatment time, whereas higher amounts of copper loading decreased SMX degradation. In contrast, the efficiency of all photocatalytic materials dropped significantly in BW and WW. This phenomenon was surpassed using persulfate in the proposed system resulting in synergistic effects, thus significantly improving the efficiency of the combined process. Specifically, when 0.75 Cu.BVO was added in BW, only 40% SMX degradation took place in 120 min under simulated solar irradiation alone, whereas in the solar/SPS/Cu.BVO system, complete elimination was achieved after 60 min. Moreover, ~37%, 45%, and 66% synergy degrees were recorded in WW using 0.75 Cu, 3.0 Cu, and 10.0 Cu.BVO, respectively. Interestingly, experimental results highlight that catalyst screening or process/system examination must be performed in a wide window of operating parameters to avoid erroneous conclusions regarding optimal materials or process combinations for a specific application.

Funder

H.F.R.I., the Hellenic Foundation for Research and Innovation and General Secretariat for Research and Technology (GSRT).

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3