Photocatalytic Degradation of Losartan with BiOCl/Sepiolite Nanocomposites

Author:

Kouvelis Konstantinos1,Karavaka Evangelia E.1,Panagiotaras Dionisios2ORCID,Papoulis Dimitrios3ORCID,Frontistis Zacharias4,Petala Athanasia2ORCID

Affiliation:

1. Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

2. Department of Environment, Ionian University, GR-29100 Zakynthos, Greece

3. Department of Geology, University of Patras, GR-26504 Patras, Greece

4. Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece

Abstract

Developing highly active and available, environmentally friendly, and low-cost photocatalytic materials is one of the most popular topics in photocatalytic degradation systems. In the present study, a series of BiOCl/Sepiolite composite photocatalysts were prepared (in the range of 5%BiOCl/Sepiolite–30%BiOCl/Sepiolite). Their characterization was conducted using X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, nitrogen physical physisorption at the temperature of liquid nitrogen (77 K), and attenuated total reflectance-Fourier transform infrared spectroscopy. Results showed that composite photocatalysts possess superior efficiency than the parent materials for losartan, an antihypertensive agent, degradation in water, with the sample with only 10%wt. BiOCl shows the highest performance. The beneficial effect of the addition of sepiolite to BiOCl is derived from the increase in surface area, the prevention of particle aggregation, and the efficient separation of photogenerated species. Increasing catalyst concentration from 125 mg/L up to 500 mg/L was accompanied by an increase in the apparent kinetic constant from 0.077 min−1 to 0.197 min−1 while varying losartan concentration from 0.25 to 5.00 mg/L slowed down the removal efficiency. In addition, losartan degradation was only partially hampered in the case of bottled water, whereas it was practically stopped in a secondary wastewater effluent. Overall, this study serves as a useful guide for using geopolymers in photocatalytic applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3