Author:
Huang Shuheng,Chen Linxin,Mei Hu,Zhang Duo,Shi Tingting,Kuang Zuyin,Heng Yu,Xu Lei,Pan Xianchao
Abstract
Accumulated evidence suggests that binding kinetic properties—especially dissociation rate constant or drug-target residence time—are crucial factors affecting drug potency. However, quantitative prediction of kinetic properties has always been a challenging task in drug discovery. In this study, the VolSurf method was successfully applied to quantitatively predict the koff values of the small ligands of heat shock protein 90α (HSP90α), adenosine receptor (AR) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that few VolSurf descriptors can efficiently capture the key ligand surface properties related to dissociation rate; the resulting models demonstrated to be extremely simple, robust and predictive in comparison with available prediction methods. Therefore, it can be concluded that the VolSurf-based prediction method can be widely applied in the ligand-receptor binding kinetics and de novo drug design researches.
Funder
Fundamental Research Funds for the Central Universities
Graduate Scientific Research and Innovation Foundation of Chongqing
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献