Machine learning methods for developments of binding kinetic models in predicting protein‐ligand dissociation rate constants

Author:

Zhao Yujing1,Liu Qilei1ORCID,Du Jian1,Meng Qingwei12,Zhang Lei1

Affiliation:

1. State Key Laboratory of Fine Chemical Frontiers Science Center for Smart Materials Oriented Chemical Engineering Institute of Chemical Process Systems Engineering School of Chemical Engineering Dalian University of Technology Dalian China

2. Ningbo Institute of Dalian University of Technology Ningbo China

Abstract

AbstractBinding kinetic properties of protein–ligand complexes are crucial factors affecting the drug potency. Nevertheless, the current in silico techniques are insufficient in providing accurate and robust predictions for binding kinetic properties. To this end, this work develops a variety of binding kinetic models for predicting a critical binding kinetic property, dissociation rate constant, using eight machine learning (ML) methods (Bayesian Neural Network (BNN), partial least squares regression, Bayesian ridge, Gaussian process regression, principal component regression, random forest, support vector machine, extreme gradient boosting) and the descriptors of the van der Waals/electrostatic interaction energies. These eight models are applied to two case studies involving the HSP90 and RIP1 kinase inhibitors. Both regression results of two case studies indicate that the BNN model has the state‐of‐the‐art prediction accuracy (HSP90: , MAEtest = 0.184, rtest = 0.976, RMSEtest = 0.220; RIP1 kinase: , MAEtest = 0.188, rtest = 0.961, RMSEtest = 0.290) in comparison with other seven ML models.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3