Numerical Study on Track–Bridge Interaction of Integral Railway Rigid-Frame Bridge

Author:

Liu WenshuoORCID,Lai Hao,Dai Gonglian,Rao Shiwei,Wang Dezhi,Wu Bing

Abstract

Track–bridge interaction (TBI) is an increasingly essential consideration for the design and operation of railway bridges, especially for the innovative bridge structure systems that constantly spring up over the years. This paper focuses on the characteristics of additional forces in continuous welded rails (CWRs) on the 3 × 70 m integral rigid-frame bridge of the Fuzhou–Xiamen High-Speed Railway, which is a novel high-speed railway (HSR) bridge structure system in China. The differential equations of rail stress and displacement are first investigated and an integrative analysis model comprising of rail, track, bridge and piers is then established. Secondly, the characteristics of representative additional forces are illustrated and the influences of different design parameters are discussed in detail. Furthermore, suitable rail fasteners, optimal layout schemes of adjacent bridges and reasonable stiffness of piers are also studied. The results indicate that the additional expansion force accounts for the largest proportion of additional forces in integral rigid-frame bridges and that resistance reduction obviously weakens the various additional forces caused by the TBI effect, while the broken gap of the rail increases greatly. Small resistance fasteners are recommended to be applied onto this new type of HSR line as these provide reductions in additional stresses of CWRs compared to WJ-8 fasteners. The additional rail stresses after adopting an adjacent span scheme of 4 × 32 m simply supported beams are less than the corresponding stresses in other schemes. The results also show that there is a strong correlation between the minimum threshold value of the pier stiffness and the longitudinal resistance of HSR lines for the integral rigid-frame bridge. This work could serve as a valuable reference for detailed design and safety evaluation of integral rigid-frame bridges.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Modern Railway Track;Esveld,2001

2. Railway Continuous Welded Rail;Guang,2005

3. Dynamics of Railway Bridges;Frýba,1996

4. Research and Application of Key Technologies of Continuous Welded Rails on High-Speed Railway;Gao,2012

5. Thermal-induced buckling and postbuckling analysis of continuous railway tracks

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3