GSAP: A Global Structure Attention Pooling Method for Graph-Based Visual Place Recognition

Author:

Yang Yukun,Ma Bo,Liu Xiangdong,Zhao Liang,Huang Shoudong

Abstract

The Visual Place Recognition problem aims to use an image to recognize the location that has been visited before. In most of the scenes revisited, the appearance and view are drastically different. Most previous works focus on the 2-D image-based deep learning method. However, the convolutional features are not robust enough to the challenging scenes mentioned above. In this paper, in order to take advantage of the information that helps the Visual Place Recognition task in these challenging scenes, we propose a new graph construction approach to extract the useful information from an RGB image and a depth image and fuse them in graph data. Then, we deal with the Visual Place Recognition problem as a graph classification problem. We propose a new Global Pooling method—Global Structure Attention Pooling (GSAP), which improves the classification accuracy by improving the expression ability of the Global Pooling component. The experiments show that our GSAP method improves the accuracy of graph classification by approximately 2–5%, the graph construction method improves the accuracy of graph classification by approximately 4–6%, and that the whole Visual Place Recognition model is robust to appearance change and view change.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3