Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition

Author:

Han Rui,Wang JinruiORCID,Wan Yanbin,Bao Jihua,Jiang Xue,Zhang ZongzhenORCID,Han BaokunORCID,Ji Shanshan

Abstract

Abstract Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automatically extract useful features has begun to attract widespread attention in the field of mechanical intelligent fault diagnosis. Combining the advantages of attention mechanism and unsupervised learning, this paper proposes a squeeze-excitation attention guided sparse filtering (SESF) method for mechanical intelligent fault diagnosis method under variable speed. Firstly, the squeeze-excitation attention mechanism is embedded in sparse filtering algorithm to guide model training. Then, unsupervised feature extraction is carried out on multi-scale inputs from the variable speed signal samples. The training results are adaptively screened and weighted to make the model pay more attention to the region with the most classify discrimination, so as to improve the feature extraction ability of the model to obtain useful information. Finally, two sets of gear and bearing tests under variable speed condition are adopted to testify the performance of the proposed method. The experimental results show that the SESF method can overcome the influence of variable speed to achieve accurate recognition of different mechanical faults and is superior to the other methods.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3