Remote Sensing Scene Graph and Knowledge Graph Matching with Parallel Walking Algorithm

Author:

Cui Wei,Hao Yuanjie,Xu XingORCID,Feng Zhanyun,Zhao Huilin,Xia Cong,Wang Jin

Abstract

In deep neural network model training and prediction, due to the limitation of GPU memory and computing resources, massive image data must be cropped into limited-sized samples. Moreover, in order to improve the generalization ability of the model, the samples need to be randomly distributed in the experimental area. Thus, the background information is often incomplete or even missing. On this condition, a knowledge graph must be applied to the semantic segmentation of remote sensing. However, although a single sample contains only a limited number of geographic categories, the combinations of geographic objects are diverse and complex in different samples. Additionally, the involved categories of geographic objects often span different classification system branches. Therefore, existing studies often directly regard all the categories involved in the knowledge graph as candidates for specific sample segmentation, which leads to high computation cost and low efficiency. To address the above problems, a parallel walking algorithm based on cross modality information is proposed for the scene graph—knowledge graph matching (PWGM). The algorithm uses a graph neural network to map the visual features of the scene graph into the semantic space of the knowledge graph through anchors and designs a parallel walking algorithm of the knowledge graph that takes into account the visual features of complex scenes. Based on the algorithm, we propose a semantic segmentation model for remote sensing. The experiments demonstrate that our model improves the overall accuracy by 3.7% compared with KGGAT (which is a semantic segmentation model using a knowledge graph and graph attention network (GAT)), by 5.1% compared with GAT and by 13.3% compared with U-Net. Our study not only effectively improves the recognition accuracy and efficiency of remote sensing objects, but also offers useful exploration for the development of deep learning from a data-driven to a data-knowledge dual drive.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3