When Convolutional Neural Networks Meet Laser-Induced Breakdown Spectroscopy: End-to-End Quantitative Analysis Modeling of ChemCam Spectral Data for Major Elements Based on Ensemble Convolutional Neural Networks

Author:

Yu Yan12ORCID,Yao Meibao12ORCID

Affiliation:

1. Intelligent Robotics Lab, School of Artificial Intelligence, Jilin University, Changchun 130012, China

2. Engineering Research Center of Knowledge-Driven Human–Machine Intelligence, Ministry of Education, Changchun 130012, China

Abstract

Modeling the quantitative relationship between target components and measured spectral information is an essential part of laser-induced breakdown spectroscopy (LIBS) analysis. However, many traditional multivariate analysis algorithms must reduce the spectral dimension or extract the characteristic spectral lines in advance, which may result in information loss and reduced accuracy. Indeed, improving the precision and interpretability of LIBS quantitative analysis is a critical challenge in Mars exploration. To solve this problem, this paper proposes an end-to-end lightweight quantitative modeling framework based on ensemble convolutional neural networks (ECNNs). This method eliminates the need for dimensionality reduction of the raw spectrum along with other pre-processing operations. We used the ChemCam calibration dataset as an example to verify the effectiveness of the proposed approach. Compared with partial least squares regression (a linear method) and extreme learning machine (a nonlinear method), our proposed method resulted in a lower root-mean-square error for major element prediction (54% and 73% lower, respectively) and was more stable. We also delved into the internal learning mechanism of the deep CNN model to understand how it hierarchically extracts spectral information features. The experimental results demonstrate that the easy-to-use ECNN-based regression model achieves excellent prediction performance while maintaining interpretability.

Funder

sponsored by the National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3