Mapping China’s Forest Fire Risks with Machine Learning

Author:

Shao YakuiORCID,Feng ZhongkeORCID,Sun Linhao,Yang Xuanhan,Li Yudong,Xu Bo,Chen Yuan

Abstract

Forest fires are disasters that are common around the world. They pose an ongoing challenge in scientific and forest management. Predicting forest fires improves the levels of forest-fire prevention and risk avoidance. This study aimed to construct a forest risk map for China. We base our map on Visible Infrared Imaging Radiometer Suite data from 17,330 active fires for the period 2012–2019, and combined terrain, meteorology, social economy, vegetation, and other factors closely related to the generation of forest-fire disasters for modeling and predicting forest fires. Four machine learning models for predicting forest fires were compared (i.e., random forest (RF), support vector machine (SVM), multi-layer perceptron (MLP), and gradient-boosting decision tree (GBDT) algorithm), and the RF model was chosen (its accuracy, precision, recall, F1, AUC values were 87.99%, 85.94%, 91.51%, 88.64% and 95.11% respectively). The Chinese seasonal fire zoning map was drawn with the municipal administrative unit as the spatial scale for the first time. The results show evident seasonal and regional differences in the Chinese forest-fire risks; forest-fire risks are relativity high in the spring and winter, but low in fall and summer, and the areas with high regional fire risk are mainly in the provinces of Yunnan (including the cities of Qujing, Lijiang, and Yuxi), Guangdong (including the cities of Shaoguan, Huizhou, and Qingyuan), and Fujian (including the cities of Nanping and Sanming). The major contributions of this study are to (i) provide a framework for large-scale forest-fire risk prediction having a low cost, high precision, and ease of operation, and (ii) improve the understanding of forest-fire risks in China.

Funder

the Key R & D Projects in Hainan Province

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3