Affiliation:
1. Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China
2. School of Information Engineering, Minzu University of China, Beijing 100081, China
Abstract
Forest fire danger prediction models often face challenges due to spatial and temporal limitations, as well as a lack of universality caused by regional inconsistencies in fire danger features. To address these issues, we propose a novel algorithm, squeeze-excitation spatial multi-scale transformer learning (SESMTML), which is designed to extract multi-scale fire danger features from remote sensing images. SESMTML includes several key modules: the multi-scale deep feature extraction module (MSDFEM) captures global visual and multi-scale convolutional features, the multi-scale fire danger perception module (MFDPM) explores contextual relationships, the multi-scale information aggregation module (MIAM) aggregates correlations of multi-level fire danger features, and the fire danger level fusion module (FDLFM) integrates the contributions of global and multi-level features for predicting forest fire danger. Experimental results demonstrate the model’s significant superiority, achieving an accuracy of 83.18%, representing a 22.58% improvement over previous models and outperforming many widely used deep learning methods. Additionally, a detailed forest fire danger prediction map was generated using a test study area at the junction of the Miyun and Pinggu districts in Beijing, further confirming the model’s effectiveness. SESMTML shows strong potential for practical application in forest fire danger prediction and offers new insights for future research utilizing remote sensing images.
Funder
Graduate Research and Practice Projects of Minzu University of China