Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century

Author:

Feng Wei,Lu Hongwei,Yao Tianci,Yu Qing

Abstract

AbstractAssociated with global warming, drought has destructive influences on agriculture and ecosystems, especially in the fragile Qinghai–Tibet Plateau (QTP). This study investigated spatial–temporal patterns of meteorological drought in the QTP and its surrounding areas and made an attempt to explore the relationship between drought conditions and elevation. Robust monitoring data from 274 meteorological stations during 1970–2017 were analyzed using the Sen’s slope method, Mann–Kendall trend test and rescaled range analysis. Results revealed that under the wetting trend in the QTP, Standardized Precipitation Evapotranspiration Index (SPEI) increased of maximum 0.012/year in spring. Moreover, severe drought frequency in winter and future drought risk in summer also showed an increasing trend. Wetter trends were positively correlated with elevation, with a key point being 4,000 m where the change trend above 4,000 m was about 6.3 times of that below 4,000 m in study area. The difference of drought severities between SPEI in the QTP and its surrounding areas has increased from − 0.19 in 1970 to 0.38 in 2017 and kept growing in future.

Funder

The Strategic Priority Research Program of the Chinese Academy of Sciences

The Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3