Robust Visual-Inertial Navigation System for Low Precision Sensors under Indoor and Outdoor Environments

Author:

Xu Changhui,Liu ZhenbinORCID,Li Zengke

Abstract

Simultaneous Localization and Mapping (SLAM) has always been the focus of the robot navigation for many decades and becomes a research hotspot in recent years. Because a SLAM system based on vision sensor is vulnerable to environment illumination and texture, the problem of initial scale ambiguity still exists in a monocular SLAM system. The fusion of a monocular camera and an inertial measurement unit (IMU) can effectively solve the scale blur problem, improve the robustness of the system, and achieve higher positioning accuracy. Based on a monocular visual-inertial navigation system (VINS-mono), a state-of-the-art fusion performance of monocular vision and IMU, this paper designs a new initialization scheme that can calculate the acceleration bias as a variable during the initialization process so that it can be applied to low-cost IMU sensors. Besides, in order to obtain better initialization accuracy, visual matching positioning method based on feature point is used to assist the initialization process. After the initialization process, it switches to optical flow tracking visual positioning mode to reduce the calculation complexity. By using the proposed method, the advantages of feature point method and optical flow method can be fused. This paper, the first one to use both the feature point method and optical flow method, has better performance in the comprehensive performance of positioning accuracy and robustness under the low-cost sensors. Through experiments conducted with the EuRoc dataset and campus environment, the results show that the initial values obtained through the initialization process can be efficiently used for launching nonlinear visual-inertial state estimator and positioning accuracy of the improved VINS-mono has been improved by about 10% than VINS-mono.

Funder

National Natural Science Foundation of China

Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of Ministry of Natural Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Simultaneous localization and mapping: part I

2. Simultaneous localization and mapping (SLAM): part II

3. Three-Dimensional Indoor Mobile Mapping with Fusion of Two-Dimensional Laser Scanner and RGB-D Camera Data;Wen;IEEE Geosci. Remote. Sens. Lett,2013

4. New Integrated Navigation Scheme for the Level 4 Autonomous Vehicles in Dense Urban Areas;Hsu,2020

5. The Performance Analysis of INS/GNSS/V-SLAM Integration Scheme Using Smartphone Sensors for Land Vehicle Navigation Applications in GNSS-Challenging Environments

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3