Enhancing Container Vessel Arrival Time Prediction through Past Voyage Route Modeling: A Case Study of Busan New Port

Author:

Yoon Jeong-Hyun1ORCID,Kim Dong-Ham2ORCID,Yun Sang-Woong2,Kim Hye-Jin2ORCID,Kim Sewon1ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Korea Research Institute of Ship and Ocean Engineering, Daejeon 34103, Republic of Korea

Abstract

Container terminals are at the center of global logistics, and are highly dependent on the schedule of vessels arriving. Conventional ETA records from ships, utilized for terminal berth planning, lack sufficient accuracy for effective plan implementation. Thus, there is a pressing need for improved ETA prediction methods. In this research, we propose a novel approach that leverages past voyage route patterns to predict the ETA of container vessels arriving at a container terminal at Busan New Port, South Korea. By modeling representative paths based on previous ports of call, the method employs real-time position and speed data from the Automatic Identification System (AIS) to predict vessel arrival times. By inputting AIS data into segmented representative routes, optimal parameters yielding minimal ETA errors for each vessel are determined. The algorithm’s performance evaluation during the modeling period demonstrates its effectiveness, achieving an average Mean Absolute Error (MAE) of approximately 3 h and 14 min. These results surpass the accuracy of existing ETA data, such as ETA in the Terminal Operating System and ETA in the AIS of a vessel, indicating the algorithm’s superiority in ETA estimation. Furthermore, the algorithm consistently outperforms the existing ETA benchmarks during the evaluation period, confirming its enhanced accuracy.

Funder

Ministry of Oceans and Fisheries, Korea

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference33 articles.

1. UNCTAD (2021). Review of Maritime Transport 2021, UN.

2. Statista (2021). International Seaborne Trade Carried by Container Ships from 1980 to 2020, Statista Inc.

3. Berth management in container terminal: The template design problem;Moorthy;OR Spectr.,2006

4. Jahn, C., and Scheidweiler, T. (2018). Dynamics in Logistics, Springer International Publishing.

5. Particle swarm optimization algorithm with time buffer insertion for robust berth scheduling;Park;Comput. Ind. Eng.,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3