Global Path Planning for Autonomous Ship Navigation Considering the Practical Characteristics of the Port of Ulsan

Author:

Yun Sang-Woong1ORCID,Kim Dong-Ham2ORCID,Kim Se-Won3ORCID,Kim Dong-Jin2ORCID,Kim Hye-Jin2ORCID

Affiliation:

1. Autonomous Ship Verification & Evaluation Research Center, Korea Research Institute of Ship and Ocean Engineering, Ulsan 44055, Republic of Korea

2. Advanced-Intelligent Ship Research Division, Korea Research Institute of Ship and Ocean Engineering, Daejeon 34103, Republic of Korea

3. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

This study introduces global path planning for autonomous ships in port environments, with a focus on the Port of Ulsan, where various environmental factors are modeled for analysis. Global path planning is considered to take place from departure to berth, specifically accounting for scenarios involving a need to navigate via anchorage areas as waypoints due to unexpected increases in port traffic or when direct access to the berth is obstructed. In this study, a navigable grid for autonomous ships was constructed using land, breakwater, and water depth data. The modeling of the Port of Ulsan’s traffic lanes and anchorage areas reflects the port’s essential maritime characteristics for global path planning. In this study, an improved A* algorithm, along with grid-based path planning, was utilized to determine a global path plan. We used smoothing algorithms to refine the global paths for practical navigation, and the validation of these paths was achieved through conducting ship maneuvering simulations from model tests, which approximate real-world navigation in navigational simulation. This approach lays the groundwork for enhanced route generation studies in complex port environments.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3