Hydrogeochemical Responses of MTMS-Coated Capillary Cover under Heavy Rainfalls

Author:

Xia Liangxiong1,Chen Jiakai1,Yang Yixin1ORCID,Zhao Hongfen2,Zhan Liangtong1,Bate Bate1

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China

2. School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China

Abstract

To limit the oxidation of waste rocks that originates from mining operations and the subsequent leaching of acidic solutions with high concentration of metal ions, a tailing–rock–clay triple layer capillary cover system was developed to prevent rainwater infiltration in humid climatic regions. The fine grained soil (FGS) layer consists of mine tailing and a hydrodesulfurization (HDS) clay from waste-water treatment with a 95:5 mass ratio. The coarse grained soil (CGS) layer consists of local waste rock granules with a size of 1–10 mm. Methyltrimethoxysilane (MTMS), an oxidation-inhibiting agent with strong hydrophobicity, was passivated on the rock grains to further reduce water infiltration and leaching of metal ions. Prototype-scale column tests were performed with matric suction and water content measurements under 680 min rainfall of 60 mm/h, the most severe annual precipitation case scenario for the Dexing Copper Mine (Jiangxi Province, China, 28.95° N, 117.57° E, humid climate). Both the uncoated and the coated covers exhibited zero leakage throughout the experiment. The passivation on rock granules in the coated cover increased the water entry value (WEV) of the CGS layer to −0.56 kPa. This led to a 15 mm water storage increment in the overlain FGS layer as compared to that in the uncoated cover, and induced lateral drainage (5% of the precipitation) in the FGS layer, which was not overserved in the uncoated cover. The concentrations of the leached Fe2+, Cu2+, Zn2+, Mn2+ and Mg2+ cations drained from the CGS layers of the uncoated cover were 0, 0.4, 0.8, 73.5, and 590.5 mg/L, which are all within the regulation limits of industrial discharge water standards. The concentrations of Cu2+, Mn2+ and Mg2+ cations drained from the coated CGS layer were reduced by 1–3 orders of magnitude. The abovementioned laboratory studies validated the water retention and leaching prevention abilities of the proposed three-layer capillary covers and the MTMS coating, which hold promises in engineering applications.

Funder

Ministry of Science and Technology of China

National natural Science Foundation of China

Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China

Overseas Expertise Introduction Center for Discipline Innovation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3