Analyses of water diversion along inclined covers with capillary barrier effects

Author:

Aubertin M.123,Cifuentes E.123,Apithy S. A.123,Bussière B.123,Molson J.123,Chapuis R. P.123

Affiliation:

1. Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, C.P. 6079, Centre-ville, Montréal, QC H3C 3A7, Canada.

2. Department of Applied Sciences, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada.

3. Department of Geology and Geological Engineering, Université Laval, Québec City, QC G1V 0A6, Canada.

Abstract

Various types of cover systems can be used to control water infiltration into waste disposal sites. One promising option is to combine different types of soil to create a layered cover with capillary barrier effects (CCBE). A CCBE basically involves the placement of a relatively fine-grained soil, which acts as a water-retention layer, over a coarser capillary break material. On slopes, a CCBE promotes lateral water diversion. Inclined CCBEs, however, are relatively complex, as their behaviour is influenced by numerous factors. In this paper, the authors present the key results obtained from a numerical investigation into the response of steeply inclined CCBEs. The study evaluates the behaviour of covers under dry and humid climatic conditions. After a review of the physical processes and background studies, the paper presents simulation results that demonstrate the effect of key factors on the diversion length of covers, including layer thicknesses, material properties, and recharge rates. The results shown here indicate that increasing the thickness of the cover may improve its efficiency, but only up to a certain maximum beyond which the gain becomes minimal. These results should be of help to those involved in the design of inclined CCBEs.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3