Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges

Author:

Mujahid OmerORCID,Contreras Ivan,Vehi JosepORCID

Abstract

(1) Background: the use of machine learning techniques for the purpose of anticipating hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood glucose below critical levels in diabetic patients. This may cause loss of cognitive ability, seizures, and in extreme cases, death. In almost half of all the severe cases, hypoglycemia arrives unannounced and is essentially asymptomatic. The inability of a diabetic patient to anticipate and intervene the occurrence of a hypoglycemic event often results in crisis. Hence, the prediction of hypoglycemia is a vital step in improving the life quality of a diabetic patient. The objective of this paper is to review work performed in the domain of hypoglycemia prediction by using machine learning and also to explore the latest trends and challenges that the researchers face in this area; (2) Methods: literature obtained from PubMed and Google Scholar was reviewed. Manuscripts from the last five years were searched for this purpose. A total of 903 papers were initially selected of which 57 papers were eventually shortlisted for detailed review; (3) Results: a thorough dissection of the shortlisted manuscripts provided an interesting split between the works based on two categories: hypoglycemia prediction and hypoglycemia detection. The entire review was carried out keeping this categorical distinction in perspective while providing a thorough overview of the machine learning approaches used to anticipate hypoglycemia, the type of training data, and the prediction horizon.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3