The Impact of Missing Continuous Blood Glucose Samples on Machine Learning Models for Predicting Postprandial Hypoglycemia: An Experimental Analysis

Author:

Rehman Najib Ur1ORCID,Contreras Ivan12ORCID,Beneyto Aleix1ORCID,Vehi Josep13ORCID

Affiliation:

1. Modeling & Intelligent Control Engineering Laboratory, Institute of Informatics and Applications, Universitat de Girona, 17003 Girona, Spain

2. Professor Serra Húnter, Universitat de Girona, 17003 Girona, Spain

3. Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 17003 Girona, Spain

Abstract

This study investigates how missing data samples in continuous blood glucose data affect the prediction of postprandial hypoglycemia, which is crucial for diabetes management. We analyzed the impact of missing samples at different times before meals using two datasets: virtual patient data and real patient data. The study uses six commonly used machine learning models under varying conditions of missing samples, including custom and random patterns reflective of device failures and arbitrary data loss, with different levels of data removal before mealtimes. Additionally, the study explored different interpolation techniques to counter the effects of missing data samples. The research shows that missing samples generally reduce the model performance, but random forest is more robust to missing samples. The study concludes that the adverse effects of missing samples can be mitigated by leveraging complementary and informative non-point features. Consequently, our research highlights the importance of strategically handling missing data, selecting appropriate machine learning models, and considering feature types to enhance the performance of postprandial hypoglycemia predictions, thereby improving diabetes management.

Funder

Spanish Ministry of Science and Innovation

Government of Catalonia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3