Enhancing the Capabilities of Continuous Glucose Monitoring With a Predictive App

Author:

Herrero Pau1ORCID,Andorrà Magí1,Babion Nils2,Bos Hendericus3,Koehler Matthias2,Klopfenstein Yannick4ORCID,Leppäaho Eemeli5,Lustenberger Patrick4,Peak Ajandek6,Ringemann Christian2,Glatzer Timor2ORCID

Affiliation:

1. Roche Diabetes Care Spain SL., Barcelona, Spain

2. Roche Diabetes Care Deutschland GmbH, Mannheim, Germany

3. IBM Client Innovation Center, Groningen, The Netherlands

4. IBM Switzerland Ltd, Zurich, Switzerland

5. Oy IBM Finland Ab, Helsinki, Finland

6. IBM Deutschland GmbH, München, Germany

Abstract

Background: Despite abundant evidence demonstrating the benefits of continuous glucose monitoring (CGM) in diabetes management, a significant proportion of people using this technology still struggle to achieve glycemic targets. To address this challenge, we propose the Accu-Chek® SmartGuide Predict app, an innovative CGM digital companion that incorporates a suite of advanced glucose predictive functionalities aiming to inform users earlier about acute glycemic situations. Methods: The app’s functionalities, powered by three machine learning models, include a two-hour glucose forecast, a 30-minute low glucose detection, and a nighttime low glucose prediction for bedtime interventions. Evaluation of the models’ performance included three data sets, comprising subjects with T1D on MDI (n = 21), subjects with type 2 diabetes (T2D) on MDI (n = 59), and subjects with T1D on insulin pump therapy (n = 226). Results: On an aggregated data set, the two-hour glucose prediction model, at a forecasting horizon of 30, 45, 60, and 120 minutes, achieved a percentage of data points in zones A and B of Consensus Error Grid of: 99.8%, 99.3%, 98.7%, and 96.3%, respectively. The 30-minute low glucose prediction model achieved an accuracy, sensitivity, specificity, mean lead time, and area under the receiver operating characteristic curve (ROC AUC) of: 98.9%, 95.2%, 98.9%, 16.2 minutes, and 0.958, respectively. The nighttime low glucose prediction model achieved an accuracy, sensitivity, specificity, and ROC AUC of: 86.5%, 55.3%, 91.6%, and 0.859, respectively. Conclusions: The consistency of the performance of the three predictive models when evaluated on different cohorts of subjects with T1D and T2D on different insulin therapies, including real-world data, offers reassurance for real-world efficacy.

Funder

Roche Diabetes Care

Publisher

SAGE Publications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concept and Implementation of a Novel Continuous Glucose Monitoring Solution With Glucose Predictions on Board;Journal of Diabetes Science and Technology;2024-08-19

2. Predicting Glucose Values: A New Era for Continuous Glucose Monitoring;Journal of Diabetes Science and Technology;2024-08-19

3. Clinical Usage and Potential Benefits of a Continuous Glucose Monitoring Predict App;Journal of Diabetes Science and Technology;2024-08-19

4. The Promise of Hypoglycemia Risk Prediction;Journal of Diabetes Science and Technology;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3