An Improved Perceptual Hash Algorithm Based on U-Net for the Authentication of High-Resolution Remote Sensing Image

Author:

Ding KaimengORCID,Yang Zedong,Wang Yingying,Liu Yueming

Abstract

Data security technology is of great significance for the effective use of high-resolution remote sensing (HRRS) images in GIS field. Integrity authentication technology is an important technology to ensure the security of HRRS images. Traditional authentication technologies perform binary level authentication of the data and cannot meet the authentication requirements for HRRS images, while perceptual hashing can achieve perceptual content-based authentication. Compared with traditional algorithms, the existing edge-feature-based perceptual hash algorithms have already achieved high tampering authentication accuracy for the authentication of HRRS images. However, because of the traditional feature extraction methods they adopt, they lack autonomous learning ability, and their robustness still exists and needs to be improved. In this paper, we propose an improved perceptual hash scheme based on deep learning (DL) for the authentication of HRRS images. The proposed method consists of a modified U-net model to extract robust feature and a principal component analysis (PCA)-based encoder to generate perceptual hash values for HRRS images. In the training stage, a training sample generation method combining artificial processing and Canny operator is proposed to generate robust edge features samples. Moreover, to improve the performance of the network, exponential linear unit (ELU) and batch normalization (BN) are applied to extract more robust and accurate edge feature. The experiments have shown that the proposed algorithm has almost 100% robustness to format conversion between TIFF and BMP, LSB watermark embedding and lossless compression. Compared with the existing algorithms, the robustness of the proposed algorithm to lossy compression has been improved, with an average increase of 10%. What is more, the algorithm has good sensitivity to detect local subtle tampering to meet the high-accuracy requirements of authentication for HRRS images.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Project

the Jiangsu Province Science and Technology Support Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3