Bridging the Diagnostic Gap between Histopathologic and Hysteroscopic Chronic Endometritis with Deep Learning Models

Author:

Kitaya Kotaro12ORCID,Yasuo Tadahiro3,Yamaguchi Takeshi4

Affiliation:

1. Infertility Center, Iryouhoujin Kouseikai Mihara Hospital, 6-8 Kamikatsura Miyanogo-cho, Nishikyo-ku, Kyoto 615-8227, Japan

2. Iryouhoujin Kouseikai Katsura-ekimae Mihara Clinic, 103 Katsura OS Plaza Building, 133 Katsura Minamitatsumi-cho, Nishikyo-ku, Kyoto 615-8074, Japan

3. Department of Obstetrics and Gynecology, Otsu City Hospital, 2-9-9 Motomiya, Otsu 520-0804, Japan

4. Infertility Center, Daigo Watanabe Clinic, 30-15 Daigo Takahata-cho, Fushimi-ku, Kyoto 601-1375, Japan

Abstract

Chronic endometritis (CE) is an inflammatory pathologic condition of the uterine mucosa characterized by unusual infiltration of CD138(+) endometrial stromal plasmacytes (ESPCs). CE is often identified in infertile women with unexplained etiology, tubal factors, endometriosis, repeated implantation failure, and recurrent pregnancy loss. Diagnosis of CE has traditionally relied on endometrial biopsy and histopathologic/immunohistochemistrical detection of ESPCs. Endometrial biopsy, however, is a somewhat painful procedure for the subjects and does not allow us to grasp the whole picture of this mucosal tissue. Meanwhile, fluid hysteroscopy has been recently adopted as a less-invasive diagnostic modality for CE. We launched the ARCHIPELAGO (ARChival Hysteroscopic Image-based Prediction for histopathologic chronic Endometritis in infertile women using deep LeArninG mOdel) study to construct the hysteroscopic CE finding-based prediction tools for histopathologic CE. The development of these deep learning-based novel models and computer-aided detection/diagnosis systems potentially benefits infertile women suffering from this elusive disease.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3