Integrity Authentication Based on Blockchain and Perceptual Hash for Remote-Sensing Imagery

Author:

Xu Dingjie123ORCID,Ren Na1234,Zhu Changqing123

Affiliation:

1. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China

2. State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

4. Hunan Engineering Research Center of Geographic Information Security and Application, Changsha 410000, China

Abstract

The integrity of remote-sensing image data is susceptible to corruption during storage and transmission. Perceptual hashing is a non-destructive data integrity-protection technique suitable for high-accuracy requirements of remote-sensing image data. However, the existing remote-sensing image perceptual hash-authentication algorithms face security issues in storing and transmitting the original perceptual hash value. This paper proposes a remote-sensing image integrity authentication method based on blockchain and perceptual hash to address this problem. The proposed method comprises three parts: perceptual hash value generation, secure blockchain storage and transmission, and remote-sensing image integrity authentication. An NSCT-based perceptual hashing algorithm that considers the multi-band characteristics of remote-sensing images is proposed. A Perceptual Hash Secure Storage and Transmission Framework (PH-SSTF) is designed by combining Hyperledger Fabric and InterPlanetary File System (IPFS). The experimental results show that the method can effectively verify remote-sensing image integrity and tamper with the location. The perceptual hashing algorithm exhibits strong robustness and sensitivity. Meanwhile, the comparison results of data-tampering identification for multiple landscape types show that the algorithm has stronger stability and broader applicability compared with existing perceptual hash algorithms. Additionally, the proposed method provides secure storage, transmission, and privacy protection for the perceptual hash value.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Resolution Remote Sensing Image Zero-Watermarking Algorithm Based on Blockchain and SDAE;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3