Improvement of Combustion Process of Spark-Ignited Aviation Wankel Engine

Author:

Finkelberg Lev,Kostuchenkov Alexander,Zelentsov AndreiORCID,Minin Vladimir

Abstract

This paper deals with the creation of modern high-performance aircraft power units based on the Wankel rotary piston engine. One of the main problems of Wankel engines is high specific fuel consumption. This paper solves the problem of improving the efficiency of this type of engine. The mathematical model of non-stationary processes of transfer of momentum, energy, mass, and the concentration of reacting substances in the estimated volume provides for the determination of local gas parameters in the entire computational region, which are presented as a sum of averaged and pulsation components. The k-ζ-f model is used as the turbulence model; the combustion is described by the coherent flame model (CFM) based on the concept of laminar flame propagation. As a result of the calculation, we obtained the values of temperature, pressure, and velocity of the working fluid in the working chamber cross-sections of a rotary–piston engine. Various options of the rotor recess shape are considered. Based on the data obtained, the rotor design was improved. The offered shape of the rotor recess has reduced emissions of both nitrogen oxides and carbon dioxide.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Introduction to Internal Combustion Engines;Stone,2012

2. The New Generation of Wankel Rotary Engines,2004

3. Development of a single-section demonstrator rotary engine on the basis of a modern complex design procedure

4. Rotary Engines;Beniovich,1968

5. Rotary Engine;Yamamoto,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3