Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)

Author:

Kucuk Merve,Surmen Ali,Sener RamazanORCID

Abstract

In recent years, there has been great interest in Wankel-type rotary engines, which are one of the most suitable power sources for unmanned aerial vehicle (UAV) applications due to their high power-to-size and power-to-weight ratios. The purpose of the present study was to investigate the potential of a hydrogen enrichment strategy for the improvement of the performance and reduction of the emissions of Wankel engines. The main motivation behind this study was to make Wankel engines, which are already very advantageous for UAV applications, even more advantageous by applying the hydrogen enrichment technique. In this study, hydrogen addition was implemented in a spark-ignition rotary engine model operating at a constant engine speed of 6000 rpm. The mass fraction of hydrogen in the intake gradually increased from 0% to 10%. Simulation results revealed that addition of hydrogen to the fuel accelerated the flame propagation and increased the burning speed of the fuel, the combustion temperature and the peak pressure in the working chamber. These phenomena had a very positive effect on the performance and emissions of the Wankel engine. The indicated mean effective pressure (IMEP) increased by 8.18% and 9.68% and the indicated torque increased by 6.15% and 7.99% for the 5% and 10% hydrogen mass fraction cases, respectively, compared to those obtained with neat gasoline. In contrast, CO emissions were reduced by 33.35% and 46.21% and soot emissions by 11.92% and 20.06% for 5% and 10% hydrogen additions, respectively. NOx emissions increased with the application of the hydrogen enrichment strategy for the Wankel engine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference58 articles.

1. Evaluation of heat release and combustion analysis in spark ignition Wankel and reciprocating engine;Cihan;Fuel,2020

2. Multi-objective optimization of operating parameters for a gasoline Wankel rotary engine by hydrogen enrichment;Ji;Energy Convers. Manag.,2021

3. Optimizing the idle performance of an n-butanol fueled Wankel rotary engine by hydrogen addition;Meng;Fuel,2021

4. Pillai, K.M., Mithran, A.J., Grips, V.K.W., Kumar, K., Sinha, U.K., Varadarajan, M.N., Isaac, J.J., and Murthy, Y.V.S. (2008, January 26–28). Design and Development of an Indigenous 55 Hp Wankel Engine. Proceedings of the International Conference on Aerospace Science and Technology, Bangalore, India.

5. Kweon, C.M. (2011). A Review of Heavy-Fueled Rotary Engine Combustion Technologies, Army Research Laboratory. Available online: https://apps.dtic.mil/sti/pdfs/ADA545309.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3