A Robust Emulation of Mechanical Loads Using a Disturbance-Observer

Author:

Lee Kooksun,Lee Jeongju,Back JuhoonORCID,Lee Young IlORCID

Abstract

This paper deals with a new control strategy for the programmable dynamometer to emulate dynamic loads. The main idea is to employ the disturbance-observer-based design and take the nominal model involved in the disturbance-observer design as the desired dynamics to be emulated. Compared to previous approaches, the proposed approach does not require exact system parameters of the motor under test, and the range of emulation parameters is wider than previous results. A rigorous stability analysis, as well as a constructive design incorporating system uncertainty and the steady state error bound are presented. An experimental system is developed to verify the performance of the proposed method, and it is demonstrated that up to 20-times of inertia emulation with relatively small emulation error (speed error less than 6 % ) is achieved and that various loads such as friction can be emulated.

Funder

Korea Small and Medium Business Administration

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference20 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3