Neuromodel of an Eddy Current Brake for Load Emulation

Author:

Gulbahce Mehmet Onur1ORCID

Affiliation:

1. Department of Electrical Engineering, Istanbul Technical University, 34467 Istanbul, Turkey

Abstract

The eddy current brake (ECB) is an electromechanical energy conversion device that can be used as a load emulator to load a motor according to the intended load scenario. However, conducting an analysis in the time domain is difficult due to its complex behavior involving mechanical, electrical, and magnetic phenomena. The challenges with the time domain analysis of the ECB require new modeling approaches that provide reliability, robustness, and controllability over a wide speed interval. If the ECB can be modeled with high accuracy, it can be controlled like a load emulator that can simulate nonlinear industrial loads. This paper describes a neuromodeling approach taken to develop an ECB. The nonlinear characteristic of the brake system was modeled with a high performance by using an artificial neural network (ANN), which is a potent nonlinear system identification tool. Several characteristics of a designed and optimized brake system undergoing various excitation currents in whole speed regions are described and verified experimentally. Eventually, an electromechanical brake system is proposed that aims to provide the required linear or nonlinear load model dynamics throughout an emulation process in line with the obtained neuromodel. To identify the most suitable ANN architecture for the problem, various ANN configurations, ranging from 1 neuron to 20 neurons in the hidden layer, as well as a statistical approach that differs from the existing literature, are presented. Additionally, the suggested model’s scalability is discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3