Atmospheric Forcing of the High and Low Extremes in the Sea Surface Temperature over the Red Sea and Associated Chlorophyll-a Concentration

Author:

Alawad Kamal A.ORCID,Al-Subhi Abdullah M.,Alsaafani Mohammed A.ORCID,Alraddadi Turki M.ORCID

Abstract

Taking advantage of 37-year-long (1982–2018) of high-quality satellite datasets, we examined the role of direct atmospheric forcing on the high and low sea surface temperature (SST) extremes over the Red Sea (RS). Considering the importance of SST in regulating ocean physics and biology, the associated impacts on chlorophyll (Chl-a) concentration were also explored, since a small change in SST can cause a significant impact in the ocean. After describing the climate features, we classified the top 5% of SST values (≥31.5 °C) as extreme high events (EHEs) during the boreal summer period and the lowest SST values (≤22.8 °C) as extreme low events (ELEs) during the boreal winter period. The spatiotemporal analysis showed that the EHEs (ELEs) were observed over the southern (northern) basin, with a significant warming trend of 0.027 (0.021) °C year−1, respectively. The EHEs were observed when there was widespread less than average sea level pressure (SLP) over southern Europe, northeast Africa, and Middle East, including in the RS, leading to the cold wind stress from Europe being relatively less than usual and the intrusion of stronger than usual relatively warm air mass from central Sudan throughout the Tokar Gap. Conversely, EHEs were observed when above average SLP prevailed over southern Europe and the Mediterranean Sea as a result of the Azores high and westward extension of the Siberian anticyclone, which led to above average transfer of cold and dry wind stress from higher latitudes. At the same time, notably less wind stress due to southerlies that transfer warm and humid air masses northward was observed. Furthermore, physical and biological responses related to extreme stress showed distinct ocean patterns associated with each event. It was found that the Chl-a concentration anomalies over the northern basin caused by vertical nutrient transport through deep upwelling processes are the manifestation of the superimposition of ELEs. The situation was the opposite for EHEs due to the stably stratified ocean boundary layer, which is a well-known consequence of global warming.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3