Responses of Satellite Chlorophyll-a to the Extreme Sea Surface Temperatures over the Arabian and Omani Gulf

Author:

Hamdeno ManalORCID,Nagy HazemORCID,Ibrahim OmneyaORCID,Mohamed BayoumyORCID

Abstract

Extreme events such as Marine Heat Waves (MHWs) and Low Chlorophyll-a (LChl-a) in the ocean have devastating impacts on the marine environment, particularly when they occur simultaneously (i.e., the compound of MHWs and LChl-a events). In this study, we investigate the spatiotemporal variability of MHWs and LChl-a events in the Arabian and Omani Gulf. For this purpose, we used satellite-based high-resolution observations of SST (0.05° × 0.05°; from 1982 to 2020) and chlorophyll-a concentration data (0.04° × 0.04°; from 1998 to 2020). Hourly air temperature, wind, and heat flux components from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) were used to explain the link between these extreme events and atmospheric forcings. Moreover, our results revealed that the annual frequency of MHW and LChl-a is related to the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results revealed an average SST warming trend of about 0.44 ± 0.06 °C/decade and 0.32 ± 0.04 °C/decade for the Arabian Gulf (AG) and the Gulf of Oman (OG), respectively. This warming rate was accompanied by MHW frequency and duration trends of 0.97 events/decade and 2.3 days/decade, respectively, for the entire study region from 1982 to 2020. The highest annual MHW frequencies were recorded in 2010 (6 events) and 2020 (5 events) associated with LChl-a frequency values of 4 and 2, respectively. La Niña events in 1999, 2010, 2011, and 2020 were associated with higher frequencies of MHW and LChl-a. The positive phase of IOD coincides with high MHW frequency in 2018 and 2019. The longest compound MHW and LChl-a event with a duration of 42 days was recorded in 2020 at OG. This extreme compound event was associated with wind stress reduction. Our results provide initial insights into the spatiotemporal variability of the compound MHW and LChl-a events that occurred in the AG and OG.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3