Experimental Evaluation of Sensor Fusion of Low-Cost UWB and IMU for Localization under Indoor Dynamic Testing Conditions

Author:

Liu ChengkunORCID,Kadja TchamieORCID,Chodavarapu Vamsy P.

Abstract

Autonomous systems usually require accurate localization methods for them to navigate safely in indoor environments. Most localization methods are expensive and difficult to set up. In this work, we built a low-cost and portable indoor location tracking system by using Raspberry Pi 4 computer, ultra-wideband (UWB) sensors, and inertial measurement unit(s) (IMU). We also developed the data logging software and the Kalman filter (KF) sensor fusion algorithm to process the data from a low-power UWB transceiver (Decawave, model DWM1001) module and IMU device (Bosch, model BNO055). Autonomous systems move with different velocities and accelerations, which requires its localization performance to be evaluated under diverse motion conditions. We built a dynamic testing platform to generate not only the ground truth trajectory but also the ground truth acceleration and velocity. In this way, our tracking system’s localization performance can be evaluated under dynamic testing conditions. The novel contributions in this work are a low-cost, low-power, tracking system hardware–software design, and an experimental setup to observe the tracking system’s localization performance under different dynamic testing conditions. The testing platform has a 1 m translation length and 80 μm of bidirectional repeatability. The tracking system’s localization performance was evaluated under dynamic conditions with eight different combinations of acceleration and velocity. The ground truth accelerations varied from 0.6 to 1.6 m/s2 and the ground truth velocities varied from 0.6 to 0.8 m/s. Our experimental results show that the location error can reach up to 50 cm under dynamic testing conditions when only relying on the UWB sensor, with the KF sensor fusion of UWB and IMU, the location error decreases to 13.7 cm.

Funder

University of Dayton School of Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3