Abstract
In this study, a novel robust navigation system for a drone in global positioning system (GPS) and GPS-denied environments is proposed. In general, the drone uses position and velocity information from GPS for guidance and control. However, GPS cannot be used in several environments; for example, GPS exhibits huge errors near buildings and trees, indoor environments. In such GPS-denied environments, a Laser Imaging Detection and Ranging (LIDAR) sensor-based navigation system has generally been used. However, the LIDAR sensor also has a weakness, and it cannot be used in an open outdoor environment where GPS can be used. Therefore, it is advantageous to develop an integrated navigation system that operates seamlessly in both GPS and GPS-denied environments. In this study, an integrated navigation system for the drone using GPS and LIDAR was developed. The design of the navigation system is based on the extended Kalman filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference9 articles.
1. K. Nonami, F. Kendoul, S. Suzuki, W. Wang, and D. Nakazawa, “Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles,” Springer, 2010.
2. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” IEEE Int. Conf. on Robotics and Automation (ICRA), p. 2520, Shanghai, China, 2011.
3. M. Hehn and R. D’Andrea, “A flying inverted pendulum,” IEEE Int. Conf. on Robotics and Automation (ICRA) p. 763, Shanghai, China, 2011.
4. K. Schauwecker and A. Zell, “On-board dual-stereo-vision for autonomous quadrotor navigation,” Int. Conf. on Unmanned Aircraft Systems (ICUAS), p. 333, 2013.
5. I. Sa, H. He, V. Huynh, and P. Corke, “Monocular vision based autonomous navigation for a cost-effective MAV in GPS-denied environments,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p. 1355, 2013.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献