Constrained MEMS-Based INS/UWB Tightly Coupled System for Accurate UGVs Navigation

Author:

Mi Jing1,Wang Qing1,Han Xiaotao1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

To enhance the navigation performance and robustness of navigation system combining ultrawideband (UWB) and inertial navigation systems (INS) under complex indoor environments, an improved navigation method—Allan variance (AV) to assist a modified adaptive extended Kalman Filter based on the dynamic weight function (DWF-MAEFF)—is proposed. Firstly, AV is used to improved INS error dynamics by modeling the stochastic noise of an inertial sensor; which can compensate for inertial sensor error caused by stochastic noise during integrated navigation. Secondly, the MAEKF is developed by designing the weight function to adjust the weight of measurement noise reasonably and dynamically, which can further improve the robustness of the AEKF algorithm. Field tests were conducted to verify the effectiveness of the proposed navigation method. The result indicated that an improvement of up to 60% over the existing integrated navigation method based on EKF and AEKF can be obtained by the proposed method.

Funder

projects of the National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3