Landslide Recognition Based on Machine Learning Considering Terrain Feature Fusion

Author:

Wang Jincan1,Wang Zhiheng2ORCID,Peng Liyao3,Qian Chenzhihao4

Affiliation:

1. School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430079, China

2. School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China

3. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430079, China

4. Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China

Abstract

Landslides are one of the major disasters that exist worldwide, posing a serious threat to human life and property safety. Rapid and accurate detection and mapping of landslides are crucial for risk assessment and humanitarian assistance in affected areas. To achieve this goal, this study proposes a landslide recognition method based on machine learning (ML) and terrain feature fusion. Taking the Dawan River Basin in Detuo Township and Tianwan Yi Ethnic Township as the research area, firstly, landslide-related data were compiled, including a landslide inventory based on field surveys, satellite images, historical data, high-resolution remote sensing images, and terrain data. Then, different training datasets for landslide recognition are constructed, including full feature datasets that fusion terrain features and remote sensing features and datasets that only contain remote sensing features. At the same time, different ratios of landslide to non-landslide (or positive/negative, P/N) samples are set in the training data. Subsequently, five ML algorithms, including Extreme Gradient Boost (XGBoost), Adaptive Boost (AdaBoost), Light Gradient Boost (LightGBM), Random Forest (RF), and Convolutional Neural Network (CNN), were used to train each training dataset, and landslide recognition was performed on the validation area. Finally, accuracy (A), precision (P), recall (R), F1 score (F1), and intersection over union (IOU) were selected to evaluate the landslide recognition ability of different models. The research results indicate that selecting ML models suitable for the study area and the ratio of the P/N samples can improve the A, R, F1, and IOU of landslide identification results, resulting in more accurate and reasonable landslide identification results; Fusion terrain features can make the model recognize landslides more comprehensively and align better with the actual conditions. The best-performing model in the study is LightGBM. When the input data includes all features and the P/N sample ratio is optimal, the A, P, R, F1, and IOU of landslide recognition results for this model are 97.47%, 85.40%, 76.95%, 80.95%, and 71.28%, respectively. Compared to the landslide recognition results using only remote sensing features, this model shows improvements of 4.51%, 35.66%, 5.41%, 22.27%, and 29.16% in A, P, R, F1, and IOU, respectively. This study serves as a valuable reference for the precise and comprehensive identification of landslide areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3