Regional landslide hazard assessment through integrating susceptibility index and rainfall process

Author:

Wang ZhihengORCID,Wang Dongchuan,Guo Qiaozhen,Wang DaikunORCID

Abstract

AbstractDue to the difference of the spatial and temporal distribution of rainfall and the complex diversity of the disaster-prone environment (topography, geological, fault, and lithology), it is difficult to assess the hazard of landslides at the regional scale quantitatively only considering rainfall condition. Based on detailed landslide inventory and rainfall data in the hilly area in Sichuan province, this study analyzed the effects of both rainfall process and environmental factors on the occurrence of landslides. Through analyzing environmental factors, a landslide susceptibility index (LSI) was calculated using multiple layer perceptron (MLP) model to reflect the regional landslide susceptibility. Further, the characteristics of rainfall process and landslides were examined quantitatively with statistical analysis. Finally, a probability model integrating LSI and rainfall process was constructed using logistical regression analysis to assess the landslide hazard. Validation showed satisfactory results, and the inclusion of LSI effectively improved the accuracy of the landslide hazard assessment: Compared with only considering the rainfall process factors, the accuracy of the landslide prediction model both considering the rainfall process and landslide susceptibility is improved by 3%. These results indicate that an integration of susceptibility index and rainfall process is essential in improving the timeliness and accuracy of regional landslide early warning.

Funder

Natural Science Foundation of Tianjin, China

The National Key R&D Program of China

Scientific Research Project of Tianjin municipal Education Commission, China

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3