Regional Landslide Susceptibility Assessment and Model Adaptability Research

Author:

Zhang Zhiqiang1ORCID,Sun Jichao1

Affiliation:

1. School of Water Resource and Environment, China University of Geosciences, Beijing 100083, China

Abstract

Landslide susceptibility denotes the likelihood of a disaster event under specific conditions. The assessment of landslide susceptibility has transitioned from qualitative to quantitative methods. With the integration of information technology in geological hazard analysis, a range of quantitative models for assessing landslide susceptibility has emerged and is now widely used. To compare and evaluate the accuracy of these models, this study focuses on Xupu County in Hunan Province, applying several models, including the CF model, FR model, CF-LR coupled model, FR-LR coupled model, SVM model, and RF model, to assess regional landslide susceptibility. ROC curves are used to evaluate the reliability of the model’s predictions. The evaluation results reveal that the CF model (AUC = 0.756), FR model (AUC = 0.764), CF-LR model (AUC = 0.776), FR-LR model (AUC = 0.781), SVM model (AUC = 0.814), and RF model (AUC = 0.912) all have AUC values within the range of 0.7–0.9, indicating that the overall accuracy of the models is good and can provide a reference for landslide susceptibility zoning in the study area. Among these, the Random Forest model demonstrates the best accuracy for landslide susceptibility zoning in the study area. By extracting the extremely high susceptibility zones from the landslide susceptibility zonings obtained by six models, a comparative analysis of model adaptability was conducted. The results indicate that the Random Forest model has the best adaptability under specific conditions in Xupu County.

Publisher

MDPI AG

Reference31 articles.

1. Landslides in a changing climate;Gariano;Earth-Sci. Rev.,2016

2. Mapping landslides from space: A review;Alessandro;Landslides,2024

3. Hard particle force in a soft fracture;Sun;Sci. Rep.,2019

4. Transport model of underground sediment in soils;Sun;Sci. World J.,2013

5. Research on underground water pollution caused by geological fault through radioactive stratum;Sun;J. Radioanal. Nucl. Chem.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3