Abstract
AbstractIn early December 2020, an atmospheric river (AR) and rain-on-snow (ROS) event impacted the Haines, Alaska area, resulting in record-breaking rainfall and snowmelt that caused flooding and dozens of mass movement events. We consider the AR—a one-in-500-year event—as the trigger for the devastating Beach Road Landslide (BRLS), which destroyed or damaged four residences and took the lives of two people. The BRLS started as a debris avalanche and transitioned into a debris flow, with a total approximate landslide volume of 187,100 m3. Geomorphic analysis using lidar data identified evidence of paleo-landslides and displaced masses of rock, one of which served as the source area for the BRLS. Significant structural features in the weak ultramafic bedrock defined the head scarp area and formed the failure plane. This study illustrates the importance of identifying pre-existing landslide features and source areas likely to produce future landslides. As an increase in ROS events is projected for Southeast Alaska with warmer and wetter winters, we recommend the development of an AR scale coupled with geological information for the region, to enhance warnings to residents in landslide-prone areas.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献