Heterogeneous Tumor-Immune Microenvironments between Primary and Metastatic Tumors in a Patient with ALK Rearrangement-Positive Large Cell Neuroendocrine Carcinoma

Author:

Tashiro Takahiro,Imamura Kosuke,Tomita YusukeORCID,Tamanoi Daisuke,Takaki Akira,Sugahara Kazuaki,Sato Ryo,Saruwatari Koichi,Sakata Shinya,Inaba Megumi,Ushijima Sunao,Hirata Naomi,Sakagami Takuro

Abstract

Evolution of tumor-immune microenviroments (TIMEs) occurs during tumor growth and dissemination. Understanding inter-site tumor-immune heterogeneity is essential to harness the immune system for cancer therapy. While the development of immunotherapy against lung cancer with driver mutations and neuroendocrine tumors is ongoing, little is known about the TIME of large cell neuroendocrine carcinoma (LCNEC) or anaplastic lymphoma kinase (ALK) rearrangement-positive lung cancer. We present a case study of a 32-year-old female patient with ALK-rearrangement-positive LCNEC, who had multiple distant metastases including mediastinal lymph-node, bilateral breasts, multiple bones, liver and brain. Multiple biopsy samples obtained from primary lung and three metastatic tumors were analyzed by fluorescent multiplex immunohistochemistry. Tissue localizations of tumor-infiltrating lymphocytes in the tumor nest and surrounding stroma were evaluated. T cell and B cell infiltrations were decreased with distance from primary lung lesion. Although each tumor displayed a unique TIME, all tumors exhibited concomitant regression after treatment with an ALK-inhibitor. This study provides the first evidence of the coexistence of distinct TIME within a single individual with ALK-rearrangement-positive LCNEC. The present study contributes to our understanding of heterogeneous TIMEs between primary and metastatic lesions and provides new insights into the complex interplay between host-immunity and cancer cells in primary and metastatic lesions.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3