Abstract
Histamine is a basic amine stored in mast cells, with its release capable of activating one of four histamine receptors. The histamine 3 receptor (H3R) is known to be cardioprotective during acute ischemia by acting to limit norepinephrine release. However, a recent study reported that myofibroblasts isolated from the infarct zone of rat hearts responded to H3R activation by up-regulating collagen production. Thus, it is necessary to clarify the potential role of the H3R in relation to fibrosis in the heart. We identified that the mouse left ventricle (LV) expresses the H3R. Isolation of mouse cardiac fibroblasts determined that while angiotensin II (Ang II) increased levels of the H3R, these cells did not produce excess collagen in response to H3R activation. Using the Ang II mouse model of adverse cardiac remodeling, we found that while H3R blockade had little effect on cardiac fibrosis, activation of the H3R reduced cardiac fibrosis and macrophage infiltration. These findings suggest that when activated, the H3R is anti-inflammatory and anti-fibrotic in the mouse heart and may be a promising target for protecting against cardiac fibrosis.
Funder
National Heart, Lung, and Blood Institute
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献