Tryptase/Protease-Activated Receptor 2 Interactions Induce Selective Mitogen-Activated Protein Kinase Signaling and Collagen Synthesis by Cardiac Fibroblasts

Author:

McLarty Jennifer L.1,Meléndez Giselle C.1,Brower Gregory L.1,Janicki Joseph S.1,Levick Scott P.1

Affiliation:

1. From the Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC.

Abstract

The mast cell product, tryptase, has recently been implicated to mediate fibrosis in the hypertensive heart. Tryptase has been shown to mediate noncardiac fibroblast function via activation of protease-activated receptor 2 and subsequent activation of the mitogen-activated protein kinase pathway, including extracellular signal–regulated kinase 1/2. Therefore, we hypothesized that this pathway may be a mechanism leading to fibrosis in the hypertensive heart. Isolated adult cardiac fibroblasts were treated with tryptase, which induced activation of extracellular signal–regulated kinase 1/2 via protease-activated receptor 2. Blockade of protease activated receptor 2 with FSLLRY (10 μmol/L) and inhibition of the extracellular signal–regulated kinase pathway with PD98059 (10 μmol/L) prevented collagen synthesis in isolated cardiac fibroblasts stimulated with tryptase. In contrast, p38 mitogen-activated protein kinase and stress-activated protein/c-Jun N-terminal kinase were not activated by tryptase. Cardiac fibroblasts isolated from spontaneously hypertensive rats showed this same pattern of activation. Treatment of spontaneously hypertensive rats with FSLLRY prevented fibrosis in these animals, indicating the in vivo applicability of the cultured fibroblast findings. Also, tryptase induced a myofibroblastic phenotype indicated by elevations in α-smooth muscle actin and extra type III domain A (ED-A) fibronectin. Thus, the results from this study demonstrate the importance of tryptase for inducing a cardiac myofibroblastic phenotype, ultimately leading to the development of cardiac fibrosis. Specifically, tryptase causes cardiac fibroblasts to increase collagen synthesis via a mechanism involving activation of protease-activated receptor 2 and subsequent induction of extracellular signal–regulated kinase signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3