Adaptive Virtual Impedance Control of a Mobile Multi-Robot System

Author:

Engelbrecht DuanneORCID,Steyn NicoORCID,Djouani KarimORCID

Abstract

The capabilities of collaborative robotics have transcended the conventional abilities of decentralised robots as it provides benefits such as scalability, flexibility and robustness. Collaborative robots can operate safely in complex human environments without being restricted by the safety cages or barriers that often accompany them. Collaborative robots can be used for various applications such as machine tending, packaging, process tasks and pick and place. This paper proposes an improvement of the current virtual impedance algorithm by developing an adaptive virtual impedance controlled mobile multi-robot system focused on dynamic obstacle avoidance with a controlled planar movement. The study includes the development of a mobile multi-robot platform whereby each robot plans a path individually without a supervisor. The proposed system would implement a two-layered hierarchy for robot path planning. The higher layer generates a trajectory from the current position to the desired position, and the lower layer develops a real-time strategy to follow the generated trajectory while avoiding static and dynamic obstacles. The key contribution of this paper is the adaptive virtual impedance controller for a multi-robot system that will maintain movement stability and improve the motion behaviour in a dynamic environment.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Reference32 articles.

1. Obstacle Detection and Avoidance Methods for Autonomous Mobile Robots;Gowtham;Int. J. Sci. Res.,2016

2. Introduction to Autonomous Mobile Robots;Siegwart,2004

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3