Model Predictive Control for Cooperative Transportation with Feasibility-Aware Policy

Author:

Elaamery BadrORCID,Pesavento MassimoORCID,Aldovini TeresaORCID,Lissandrini NicolaORCID,Michieletto GiuliaORCID,Cenedese AngeloORCID

Abstract

The transportation of large payloads can be made possible with Multi-Robot Systems (MRS) implementing cooperative strategies. In this work, we focus on the coordinated MRS trajectory planning task exploiting a Model Predictive Control (MPC) framework addressing both the acting robots and the transported load. In this context, the main challenge is the possible occurrence of a temporary mismatch among agents’ actions with consequent formation errors that can cause severe damage to the carried load. To mitigate this risk, the coordination scheme may leverage a leader–follower approach, in which a hierarchical strategy is in place to trade-off between the task accomplishment and the dynamics and environment constraints. Nonetheless, particularly in narrow spaces or cluttered environments, the leader’s optimal choice may lead to trajectories that are infeasible for the follower and the load. To this aim, we propose a feasibility-aware leader–follower strategy, where the leader computes a reference trajectory, and the follower accounts for its own and the load constraints; moreover, the follower is able to communicate the trajectory infeasibility to the leader, which reacts by temporarily switching to a conservative policy. The consistent MRS co-design is allowed by the MPC formulation, for both the leader and the follower: here, the prediction capability of MPC is key to guarantee a correct and efficient execution of the leader–follower coordinated action. The approach is formally stated and discussed, and a numerical campaign is conducted to validate and assess the proposed scheme, with respect to different scenarios with growing complexity.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3