Dynamic Parameter Identification of a Pointing Mechanism Considering the Joint Clearance

Author:

Sun Jing,Han Xueyan,Li Tong,Li Shihua

Abstract

The clearance of the revolute joint influences the accuracy of dynamic parameter identification. In order to address this problem, a method for dynamic parameter identification of an X–Y pointing mechanism while considering the clearance of the revolute joint is proposed in this paper. Firstly, the nonlinear dynamic model of the pointing mechanism was established based on a modified contact model, which took the effect of the asperity of contact surface on joint clearance into consideration. Secondly, with the aim of achieving the anti-interference incentive trajectory, the trajectory was optimized according to the condition number of the observation matrix and the driving functions of activate joints that could be obtained. Thirdly, dynamic simulation was conducted through Adams software, and clearance was involved in the simulation model. Finally, the dynamic parameter identification of the pointing mechanism was conducted based on an artificial bee colony (ABC) algorithm. The identification result that considered joint clearance was compared with that which did not consider joint clearance. The results showed that the accuracy of the dynamic parameter identification was improved when the clearance was taken into consideration. This study provides a theoretical basis for the improvement of dynamic parameter identification accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3