Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration

Author:

Alabi Joel O.1,Okedoyin Deborah O.1ORCID,Anotaenwere Chika C.1,Wuaku Michael1,Gray DeAndrea1,Adelusi Oludotun O.1ORCID,Ike Kelechi A.1,Olagunju Lydia K.1ORCID,Dele Peter A.1ORCID,Anele Uchenna Y.1

Affiliation:

1. Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 24711, USA

Abstract

The growing interest in improving rumen fermentation and mitigating methane emissions necessitates the use of essential oil blends (EOB) and fumaric acid (FA). This study evaluated the synergistic effect of four EOB with or without FA supplementation on in vitro dry matter digestibility, greenhouse gas emission, and total volatile fatty acid production using inoculum from three rumen-cannulated Black Angus beef cows. The study was arranged in a 4 × 2 + 1 factorial design to evaluate the effects of the four EOB and two FA levels on a total mixed ration (TMR). The EOB dosage was 100 µL while FA was added at 3% of total mixed ration. The EOB × FA interaction (p < 0.05) influenced the dry matter, neutral detergent fiber, and hemicellulose degradabilities. All the EOB and FA (EFA) treatments decreased (p < 0.001) the dry matter degradability compared to the control (TMR substrate only). The EFA4 treatment reduced the neutral detergent fiber and hemicellulose degradabilities compared to the control. The ruminal pH was influenced (p < 0.001) by both the EOB and FA inclusion, and the EOB × FA interaction was significant. The microbial mass was higher (p < 0.001) in the EFA1, EFA4, and EOB4 compared to the control and the EOB3 treatments. The EFA1 and EOB1 produced less (p < 0.001) gas than the control by 29.1 and 32.1%, respectively. Compared with the control, the EFA1 and EOB1 treatments decreased (p < 0.001) methane gas by 90.8% and 86.4%, respectively, while the carbon dioxide was reduced (p = 0.004) by 65.7 and 57.9%, respectively. The EOB × FA interaction was significant (p < 0.001) for the total and individual volatile fatty acid concentrations. The inclusion of FA increased the propionate concentration by 9.5% and decreased (p = 0.02) the acetate concentration by 4%. In summary, the synergistic effect of the EOB and FA offers an effective way to reduce greenhouse gas emission and enhance total volatile fatty acids.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3