A Mixture of Prebiotics, Essential Oil Blends, and Onion Peel Did Not Affect Greenhouse Gas Emissions or Nutrient Degradability, but Altered Volatile Fatty Acids Production in Dairy Cows Using Rumen Simulation Technique (RUSITEC)

Author:

Alabi Joel O.1ORCID,Wuaku Michael1ORCID,Anotaenwere Chika C.1,Okedoyin Deborah O.1ORCID,Adelusi Oludotun O.1ORCID,Ike Kelechi A.1,Gray DeAndrea1ORCID,Kholif Ahmed E.12ORCID,Subedi Kiran3ORCID,Anele Uchenna Y.1

Affiliation:

1. Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 24711, USA

2. Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza 12622, Egypt

3. Analytical Services Laboratory, College of Agriculture and Environmental Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

Abstract

This study evaluated the synergistic effects of prebiotics containing galacto-oligosaccharides (GOS) and/or mannan oligosaccharides (MOS), essential oil blend (EOB), and onion peel (OPE) on fermentation characteristics using the rumen simulation technique (RUSITEC) system. Three rumen-cannulated, non-lactating Holstein Friesian cows were the inoculum donors. The substrate used for the study was a total mixed ration (TMR), which consisted of corn silage, alfalfa hay, and concentrate at 6:2:2, respectively. Sixteen fermentation vessels were randomly allotted to four treatments with four replicates each over a 9-day period in a completely randomized design. The treatments assessed include: control [TMR only], GEO [TMR + GOS + EOB + OPE], MEO [TMR + MOS + EOB + OPE], and OLEO [TMR + OLG + EOB + OPE]. OLG comprises GOS and MOS in equal proportion. EOB was included at 3 µL/g, while OPE, GOS, MOS, and OLG were added at 30 mg/g TMR. Results showed that pH, gas volume, effluent volume, and ammonia-N were not affected (p > 0.05) by the different additives. Similarly, greenhouse gas (GHG) emissions and nutrient digestibility were not affected by the treatments. Compared to the control, total volatile fatty acids (VFA) were decreased (p < 0.05) by 14.8, 10.8, and 8.5% with GEO, MEO, and OLEO inclusion, respectively, while the molar proportion of acetate was increased (p = 0.011) by 3.3, 1.1, and 3.8% with GEO, MEO, and OLEO inclusion, respectively. MEO increased isobutyrate (p = 0.001) and branched chain VFA (p = 0.013) contents; however, GEO and OLEO inclusion reduced them. Overall, the interaction of EOB, OPE, GOS, and/or MOS did not affect nutrient digestibility or GHG emissions but reduced VFA production. Further research is recommended to assess the dose effect of the additives on GHG emissions and VFA production; and to determine the long-term effects of these interventions on the rumen microbiome and animal performance.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3