Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas

Author:

Tamang Mendup,Chettri Roman,Vineeta ,Shukla Gopal,Bhat Jahangeer A.,Kumar AmitORCID,Kumar Munesh,Suryawanshi Arpit,Cabral-Pinto MarinaORCID,Chakravarty SumitORCID

Abstract

In the modern era, Gmelina arborea plantations are a hotspot of future research because of their high carbon sequestration potential. The present work was conducted during 2018 to 2020 on a young unmanaged Gmelina farm to understand the ecosystem’s carbon and its dynamics. The study area was categorized into three age classes: ≤5, 5–10, and 10–15 years. In a plantation, Gmelina trees (10%) were randomly selected while other trees (90%) were also taken into the consideration for ecosystem carbon. A stratified random nested quadrate sampling method was adopted for analyzing other vegetation forms under study. Overall, 51 individual species in the studied Gmelina farm were found which includes 23 tree species, 7 shrub species, 16 herbs, 2 climbers, and 3 species of ferns. The estimated quantitative vegetation parameters and diversity indices indicate that the plant assemblages were heterogeneous with native diverse species evenly distributed with fairly higher densities, frequencies, and abundance. Herbs were the most important species followed by shrubs and trees. Consequently, with the increasing age of plantation, the richness of plant species increased. Soil properties were significantly influenced by the age of the plantation but exhibited no discreet trend. Total biomass density and total carbon density increased with increasing plantation age while no drastic variation was found in available soil organic carbon (SOC) because of insignificant variability in litter production. Total carbon, available SOC (up to 60 cm depth) and ecosystem carbon in the three age class plantations fell in the ranges of 54.51–59.91, 48.18–55.73, and 104.81–110.77 Mg ha−1, respectively. The carbon sequestration potential of Gmelina arborea is higher compared to other reported species and highly supportive of converting unutilized agricultural landscapes to reduce the atmospheric carbon dioxide in future.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference78 articles.

1. Threats to biodiversity and conservation strategies;Raj,2018

2. Estimation of carbon offset for teak plantation in lower northern Thailand;Kongmeesup;Songklanakarin J. Sci. Technol.,2019

3. Deforestation: Causes, effects and control strategies;Chakravarty,2012

4. Effect of vegetation communities and altitudes on the soc stock in Kotli Bhel-1a catchment, India;Kumar;CSAWAC,2017

5. Impact of Carbon Stocks of Anogeissus latifolia on Climate Change and Socioeconomic Development: a Case Study of Garhwal Himalaya, India

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3