Efficient [Fe-Imidazole@SiO2] Nanohybrids for Catalytic H2 Production from Formic Acid

Author:

Gkatziouras Christos1,Solakidou Maria1ORCID,Louloudi Maria1

Affiliation:

1. Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Abstract

Three imidazole-based hybrid materials, coded as IGOPS, IPS and impyridine@SiO2 nanohybrids, were prepared via the covalent immobilization of N-ligands onto a mesoporous nano-SiO2 matrix for H2 generation from formic acid (FA). BET and HRTEM demonstrated that the immobilization of the imidazole derivative onto SiO2 has a significant effect on the SSA, average pore volume, and particle size distribution. In the context of FA dehydrogenation, their catalytic activity (TONs, TOFs), stability, and reusability were assessed. Additionally, the homologous homogeneous counterparts were evaluated for comparison purposes. Mapping the redox potential of solution Eh vs. SHE revealed that poly-phosphine PP3 plays an essential role in FA dehydrogenation. On the basis of performance and stability, [Fe2+/IGOPS/PP3] demonstrated superior activity compared to other heterogeneous catalysts, producing 9.82 L of gases (VH2 + CO2) with TONs = 31,778, albeit with low recyclability. In contrast, [Fe2+/IPS/PP3] showed the highest stability, retaining considerable performance after three consecutive uses. With VH2 + CO2 = 7.8 L, [Fe2+/impyridine@SiO2/PP3] activity decreased, and it was no longer recyclable. However, the homogeneous equivalent of [Fe2+/impyridine/PP3] was completely inactive. Raman, FT/IR, and UV/Vis spectroscopy demonstrated that the reduced recyclability of [Fe2+/IGOPS/PP3] and [Fe2+/impyridine@SiO2/PP3] nanohybrids is due to the reductive cleavage of their C-O-C bonds during catalysis. An alternative grafting procedure is proposed, applying here to the grafting of IPS, resulting in its higher stability. The accumulation of water derived from substrate’s feeding causes the inhibition of catalysis. In the case of [Fe2+-imidazole@SiO2] nanohybrids, simple washing and drying result in their re-activation, overcoming the water inhibition. Thus, the low-cost imidazole-based nanohybrids IGOPS and IPS are capable of forming [Fe2+/IGOPS/PP3] and [Fe2+/IPS/PP3] heterogeneous catalytic systems with high stability and performance for FA dehydrogenation.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3