Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis

Author:

Saleh Hosam M.1,Hassan Amal I.1

Affiliation:

1. Radioisotope Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt

Abstract

Carbon capture and use may provide motivation for the global problem of mitigating global warming from substantial industrial emitters. Captured CO2 may be transformed into a range of products such as methanol as renewable energy sources. Polymers, cement, and heterogeneous catalysts for varying chemical synthesis are examples of commercial goods. Because some of these components may be converted into power, CO2 is a feedstock and excellent energy transporter. By employing collected CO2 from the atmosphere as the primary hydrocarbon source, a carbon-neutral fuel may be created. The fuel is subsequently burned, and CO2 is released into the atmosphere like a byproduct of the combustion process. There is no net carbon dioxide emitted or withdrawn from the environment during this process, hence the name carbon-neutral fuel. In a world with net-zero CO2 emissions, the anthroposphere will have attained its carbon hold-up capacity in response to a particular global average temperature increase, such as 1.5 °C. As a result, each carbon atom removed from the subsurface (lithosphere) must be returned to it, or it will be expelled into the atmosphere. CO2 removal technologies, such as biofuels with carbon sequestration and direct air capture, will be required to lower the high CO2 concentration in the atmosphere if the Paris Agreement’s ambitious climate targets are to be realized. In a carbon-neutral scenario, CO2 consumption with renewable energy is expected to contribute to the displacement of fossil fuels. This article includes a conceptual study and an evaluation of fuel technology that enables a carbon-neutral chemical industry in a net-zero-CO2-emissions environment. These are based on the use of collected CO2 as a feedstock in novel chemical processes, along with “green” hydrogen, or on the use of biomass. It will also shed light on innovative methods of green transformation and getting sustainable, environmentally friendly energy.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3