Double-Ligand [Fe/PNP/PP3] and Their Hybrids [Fe/SiO2@PNP/PP3] as Catalysts for H2-Production from HCOOH

Author:

Theodorakopoulos Marinos1ORCID,Solakidou Maria1ORCID,Deligiannakis Yiannis2ORCID,Louloudi Maria1

Affiliation:

1. Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

2. Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece

Abstract

Two types of iron-based catalysts, [Fe/SiO2@iProPNP/PP3] and [Fe/SiO2@tBuPNP/PP3], for the dehydrogenation of formic acid (FADH), were synthesized. These catalysts were developed using a double-ligand approach combining a PNP ligand and a PP3 ligand, demonstrating functionality without the need for additional cocatalysts or additives. Furthermore, hybrid catalysts [Fe/SiO2@iProPNP/PP3] and [Fe/SiO2@tBuPNP/PP3] were created by covalently grafting PNP ligands onto SiO2 particles. The hybrid [Fe/SiO2@iProPNP/PP3] exhibited enhanced recyclability, with turnover numbers (TONs) exceeding 74,000. In situ ATR-FTIR and UV-Vis spectroscopies were used to monitor the structure and dynamics of the catalysts under catalytic conditions, revealing the formation of active catalysts through the involvement of all components: [Fe (metal)/PNP (first ligand)/PP3 (second ligand)/FA (substrate)], which are crucial to FADH catalysis. An Arrhenius study revealed that the hybrid [Fe/SiO2@iProPNP/PP3] had a lower activation energy (Ea = 42.5 kJ/mol) compared to its homogeneous counterpart (Ea = 48.2 kJ/mol), indicating superior catalytic performance. Conversely, [Fe/SiO2@tBuPNP/PP3] showed an increased activation energy (Ea = 48.3 kJ/mol) compared to its homogeneous form (Ea = 46.4 kJ/mol). This study discusses the differing roles of tBuPNP and iProPNP in catalyst configuration, highlighting the potential of double-ligand catalysts to enhance the performance and recyclability of PNP ligands in FADH, offering significant implications for the development of efficient and reusable catalytic systems.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3